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ABSTRACT
With the increasing integration of humans and the cyber world,

user authentication becomes critical to support various emerging

application scenarios requiring security guarantees. Existing works

utilize Channel State Information (CSI) of WiFi signals to capture

single human activities for non-intrusive and device-free user au-

thentication, but multi-user authentication remains a challenging

task. In this paper, we present a multi-user authentication system,

MultiAuth, which can authenticate multiple users with a single

commodity WiFi device. The key idea is to profile multipath com-

ponents of WiFi signals induced by multiple users, and construct

individual CSI from the multipath components to solely charac-

terize each user for user authentication. Specifically, we propose

a MUltipath Time-of-Arrival measurement algorithm (MUTA) to

profile multipath components of WiFi signals in high resolution.

Then, after aggregating and separating the multipath components

related to users, MultiAuth constructs individual CSI based on the

multipath components to solely characterize each user. To identify

users,MultiAuth further extracts user behavior profiles based on the
individual CSI of each user through time-frequency analysis, and

leverages a dual-task neural network for robust user authentication.

Extensive experiments involving 3 simultaneously present users

demonstrate that MultiAuth is accurate and reliable for multi-user

authentication with 87.6% average accuracy and 8.8% average false

accept rate.

CCS CONCEPTS
•Networks→Mobile andwireless security; •Human-centered
computing →Mobile computing.
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1 INTRODUCTION
Nowadays, many efforts have been made to extend the Internet

of Things (IoT) to a more generalized concept, i.e., the Internet of

Everything (IoE) [9]. Instead of connecting only things (e.g., mobile

devices) online, the IoE integrates humans, processes, data, and

things for connecting everything to the cyber world. Hence, the ba-

sis of mapping humans to the cyber world, i.e., user authentication,

could support not only security guarantees but also various IoE

applications. Different from traditional authentication approaches

(e.g., password, fingerprint, and face recognition), user authenti-

cation for IoE should possess more advanced capabilities, such as

authenticating users without extra interaction, and authenticat-

ing multiple users simultaneously, etc. The increasing demands

of IoE applications inspire many research efforts to realize user

authentication with such advanced capabilities.

To enable user authentication without extra interaction, existing

works exploit WiFi signals to sense daily activities for user authen-

tication [6, 7, 13, 14, 20, 27]. However, the WiFi-based works can

only realize user authentication under single-user scenarios, which

are usually limited and hardly support a wider range of multi-user

scenarios. To adapt to the widely deployed multi-user collaboration

scenarios, it is necessary to authenticate multiple users simulta-

neously without extra interaction. For example, in the enterprise

domain, smart factories could map the workers and their activities

to their identities, which enables tracing previous activities and

prompting current activities for collaborative intelligent manufac-

turing. In the entertainment field, the entertainment system could

map real-world players and their activities to the virtual-world

identities for supporting multi-player motion sensing games.
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Since WiFi signals propagate in omnidirectional ways and have

significant multipath effects, it is feasible to use Channel State Infor-

mation (CSI) of WiFi signals to capture human activities to enable

multi-user authentication. To implement multi-user authentication

using WiFi signals, we face several challenges in practice. First, we

should accurately profile the multipath components of WiFi signals

to capture each user’s activity individually under multi-user scenar-

ios. Second, we need to use only single WiFi device to distinguish

multiple users. Third, we should extract robust behavioral features

from each user to enable multi-user authentication.

In this paper, we propose a multi-user authentication system,

𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ, which authenticatesmultiple users simultaneouslywith

single commodity WiFi device. The key idea is to profile multipath

components of WiFi signals induced by multiple users, and con-

struct individual CSI from the multipath components to solely

characterize each user for user authentication. Specifically, we

first present a MUltipath Time-of-Arrival measurement algorithm

(MUTA) to measure the Time-of-Arrival (ToA) of signal propaga-

tion paths for multipath profiling in high resolution. Then, after

aggregating and separating users’ multipath components, we con-

struct individual CSI of each user to solely characterize a user. Next,

we conduct time-frequency analysis on individual CSI to obtain

user behavior profiles, and design a Convolutional Neural Network-

Recurrent Neural Network (CNN-RNN)-based dual-task model to

extract fine-grained features from the profiles for robust user au-

thentication. Extensive experiments demonstrate that𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ

could simultaneously authenticate up to 3 users with average 87.6%

authentication accuracy and 8.8% false accept rate.

We highlight our contributions as follows.

• We propose a multi-user authentication system that can

authenticate multiple users simultaneously with only single

commodity WiFi device under multi-user scenarios.

• We present a multipath profiling algorithm, MUTA, which

can distinguish different propagation paths of WiFi signals

for high-resolution multipath profiling.

• We exploit rich information underlying multipath compo-

nents of WiFi signals, and construct individual CSI to solely

characterize each user under multi-user scenarios.

• We evaluate the performance of the proposed system in

real environments, and the results show that𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ can

authenticate multiple users simultaneously.

2 PRELIMINARY
To realize multi-user authentication, we first discuss the theoretical

fundamental of multipath profiling using CSI of WiFi signals, and

then explore the feasibility of multi-user authentication using CSI.

2.1 Theoretical Fundamental of Multipath
Profiling Using CSI

To achieve multi-user authentication, behavioral features of each

user underlying WiFi signals should be characterized individually.

However, WiFi signals induced by multiple users cannot directly

exhibit individual information. To solve the problem, we propose

to measure propagation delays (i.e., Time-of-Arrival, ToA) and pro-

file multipath components induced by each user, because signals

reflected by users locating at different positions propagate with dif-

ferent path lengths. Existing works compute power delay profiles to
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Figure 1: ToA measurement with CSI phase shifts.

measure ToA through Inverse Fast Fourier Transform (IFFT) [17, 24].

However, the time resolution of power delay profile depends on

signal bandwidth [24], i.e., Δ = 1/𝐵, where 𝐵 is the bandwidth

and is narrow for commercial WiFi. Such a resolution usually can-

not effectively distinguish multipath components under limited

bandwidths, which may disable multi-user sensing.

To measure propagation delays of WiFi signals with high res-

olution, different from existing IFFT-based works, we propose a

MUltipath Time of Arrival measurement algorithm (MUTA). The

algorithm is developed from MUltiple SIgnal Classification algo-

rithm (MUSIC) [12], which is a classic high-resolution algorithm

to measure multipath Angle-of-Arrivals (AoAs) through the phase

shift across antennas. The proposed MUTA measures multipath

ToAs through the phase shift across subcarriers for high-resolution

multipath profiling. Specifically, suppose a WiFi signal is trans-

mitted from a transmitter and propagates through 𝐷 multipath

components with different lengths to arrive at a receiver, as shown

in the left of Figure 1. For the OFDM-based WiFi signals propa-

gating through multiple subcarriers, one path’s phase shift intro-

duced at𝑚-th subcarrier relative to the first subcarrier is −2𝜋 (𝑚 −
1) 𝑓𝛿Δ𝑡 , where 𝑓𝛿 is the frequency difference between adjacent

subcarriers, and Δ𝑡 is the ToA of the path, as illustrated in the

right part of Figure 1. For simplicity of representation, we de-

note the complex exponential of these introduced phase shifts

as a function of the ToA of the propagation path, so the phase

shifts in complex exponential format across all𝑀 subcarriers are

𝑎(Δ𝑡) =
[
1 𝑒−𝑗2𝜋 𝑓𝛿Δ𝑡 · · · 𝑒−𝑗2𝜋 (𝑀−1) 𝑓𝛿Δ𝑡

]𝑇
. Based on the

phase shifts of each path, we construct a mode vector describing the

phase shifts for all the 𝐷 paths, 𝐴 = [𝑎(Δ𝑡1), 𝑎(Δ𝑡2), · · · , 𝑎(Δ𝑡𝐷 )] .
Hence, the signal 𝑋 is modeled as:

𝑋 = 𝐴𝑆 + 𝑁, (1)

where 𝑆 is the transmitted signal and 𝑁 is noise.

Based on the data model, we further measure ToAs of signal

propagation paths for multipath profiling. The received signal 𝑋

containing the CSI collected under multiple subcarriers could be

arranged to a measurement matrix, i.e.,

𝑋 =


ℎ(𝑓1) ℎ(𝑓2) · · · ℎ(𝑓𝑊 )

ℎ(𝑓𝑊 +1) ℎ(𝑓𝑊 +2) · · · ℎ(𝑓2𝑊 )
.
.
.

.

.

. · · ·
.
.
.

ℎ(𝑓(𝐿−1)𝑊 +1) ℎ(𝑓(𝐿−1)𝑊 +2) · · · ℎ(𝑓𝐿𝑊 )


, (2)

where ℎ(𝑓𝑖 ) is the CSI value of the 𝑖-th subcarrier, 𝐿 is the maximal

number of multipath components,𝑊 is the number of samples to

measure each path, and 𝐿 ×𝑊 equals to the number of available

subcarriers. The value of 𝐿 and𝑊 could be set according to actual
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(a) Static environment.
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(b) Multi-user walking.

Figure 2: Pseudo-spectrum in different situations.

needs of multipath resolving and subcarrier number. To balance the

trade-off between multipath distinguishing and noise resistance,

we set 𝐿 and𝑊 equal for each received signal. According to the

correspondence, MUTA could measure ToAs as long as the mode

vector 𝐴 could be derived from the measurement matrix. Specifi-

cally, we first perform eigenvalue decomposition of the covariance

matrix 𝑅 = 𝑋𝑋𝐻 , where 𝑋𝐻 is the conjugate transpose of 𝑋 . Then,

𝐷 eigenvectors with the largest 𝐷 eigenvalues are selected, which

constructs a signal subspace. The rest 𝑀 − 𝐷 eigenvectors form

a noise subspace 𝑈𝑁 . Afterward, ToAs could be measured by a

pseudo-spectrum based on the conclusion that the noise subspace

is orthogonal to the mode vector of signals [12], i.e.,

𝑃𝑀𝑈 (Δ𝑡) = 1

𝑎𝑇 (Δ𝑡)𝑈𝑁𝑈𝐻𝑁 𝑎(Δ𝑡)
. (3)

Because of the orthogonality, the ToA Δ𝑡 of a multipath signal

exhibits a maximum value in the pseudo-spectrum, which could be

detected through searching the peaks in 𝑃𝑀𝑈 . Hence, by measuring

the ToAs of a signal, the proposed MUTA could resolve the signal

to multiple paths, each of which propagates with different delays.

The theoretical resolution of MUTA could be derived accord-

ing to the resolution analysis of MUSIC, through the analogy be-

tween ToA and AoA, space (i.e., the parameter corresponds to anten-

nas) and frequency (i.e., the parameter corresponds to subcarriers).

Based on an universal analysis model of MUSIC-based AoA mea-

surement [30], we develop the relationship between the threshold

of Signal-Noise-Rate (𝑆𝑁𝑅𝑡 ) and the time resolution Δ𝑡 as

𝑆𝑁𝑅𝑡 = 360(𝑚 − 2

𝑚𝑊
) (𝜋𝑚Δ𝑓 Δ𝑡 )−4, (4)

where𝑚 and𝑊 are the dimension and column of measurement ma-

trix in MUTA, Δ𝑓 = 312.5𝑘𝐻𝑧 is the frequency difference between

two subcarriers. Take the 5𝐺𝐻𝑧 commercial WiFi as an illustration.

Overall 200𝑀𝐻𝑧 bandwidth signals could be spliced as a whole ac-

cording to [24], which provides 560 subcarriers available to form a

measurement matrix with𝑚 = 560 and𝑊 = 24. The SNR threshold

is set to 10𝑑𝐵 because the SNR range of standard WiFi signal is

10 − 30𝑑𝐵 [2]. Under the above setting, MUTA improves time reso-

lution from 5.0𝑛𝑠 to 2.0𝑛𝑠 and space resolution from 1.5𝑚 to 0.6𝑚

compared with IFFT-based multipath profiling. Therefore, applying

MUTA could promote the resolution of multipath profiling of WiFi

signals to satisfy fine-grained multi-objective sensing.

2.2 Feasibility Study of Multi-User
Authentication using CSI

To achieve multi-user authentication, we further explore the fea-

sibility of authenticating multiple users based on the multipath
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Figure 3: Pseudo-spectrum
after static removing.
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tion of different users.

components measured by MUTA. We first collect CSI of WiFi sig-

nals in a static environment, and employ MUTA to calculate the

pseudo-spectrum 𝑃𝑀𝑈 for each CSI packet. The result of pseudo-

spectrum is shown in Figure 2(a). It can be observed that there

are several multipath components indicating the line-of-sight sig-

nals and static reflected signals, each of which keeps stable across

CSI packets. Then, we further collect CSI of WiFi signals from

two users walking simultaneously in the same environment. As

shown in Figure 2(b), the ToAs of specific multipath components

in the pseudo-spectrum change dynamically with the two users’

movement. This indicates that users’ movements affect the mul-

tipath length, which is consistent with the theoretical analysis of

MUTA. Furthermore, we remove the multipath components stable

among ToA by calculating the differential between CSI packets to

explicitly exhibit users’ movements, as shown in Figure 3. It can be

observed that there remain two significant peaks, representing the

multipath components reflected by the two users respectively. The

result demonstrates that the proposed MUTA is able to resolve the

multipath components induced by multiple individuals.

Afterward, we further explore identifying multiple users based

on multipath components of WiFi signals. The change of a path’s

ToA, i.e., the shift of a peak’s position in the pseudo-spectrum, indi-

cates the length change of the path, which is relevant to the motion

amplitude of users. Thus, change of ToA is roughly applied to dis-

tinguish users in this section. To extract individual uniqueness, we

explore statistical distribution for different users to explore differ-

ences among individuals. Specifically, we calculate the first-order

difference of a path’s ToAs over time for each movement, which

is a one-dimensional vector (i.e., each element in the vector is the

path’s ToA difference between two adjacent packets). Since Princi-

pal Component Analysis (PCA) could enlarge the variance between

different samples to exhibit dominated statistical distribution, we

employ PCA on the vectors collected from several times of move-

ment by the two users. Figure 4 shows the statistical distribution

of these samples using PCA. It can be observed that most of the

samples are aggregated in two regions, which demonstrates that

the two users could be roughly distinguished through the multipath

components induced by human movement. With the encouraging

experimental results, we are motivated to exploit rich information

underlying multipath components of WiFi signals for multi-user

authentication.

3 DESIGN OVERVIEW
In this section, we present the threat model and system overview

for the multi-user authentication system𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ.
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Figure 5: System overview.

3.1 Threat Model
In the threat model, one or more spoofers would deceive the au-

thentication system for allowing legal permissions to multi-user

collaboration applications. Specifically, one or more spoofers per-

form activities for trying to deceive the authentication system with

one of the legitimate user’s identity respectively. The system uses

WiFi signals to sense all the users’ activities, and then identifies each

user to detect the spoofers through the sensed activities of each

user individually. The threat model could be refined to two attacks

by different attack efforts, i.e., zero-effort attack and imitation attack.
For the zero-effort attack, spoofers perform activities to deceive

the system without any prior knowledge about legitimate users.

For the imitation attack, spoofers attempt to deceive the system by

imitating one of the legitimate user’s behaviors.

3.2 System Overview
Figure 5 shows the architecture of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ, which includes two

stages, i.e., the register stage and authentication stage.

In the register stage, each user performs specific activities several

times for identity registration, such as walking, standing up, etc.

First, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ collects CSI of WiFi signals affected by a user’s

activity, and performs multipath profiling through the proposed

MUltipath Time of Arrival measurement algorithm (MUTA). Then,

after aggregating the multipath components involved with the user,

𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ constructs individual CSI of the user for individual char-

acterization. Afterward, based on user behavior profiles derived by

the individual CSI,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ trains a proposed Convolutional Neu-

ral Network-Recurrent Neural Network (CNN-RNN)-based dual-

task model for feature extraction. Finally, after all users registering

identity in the system respectively, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ obtains a trained

model with the capability of authenticating multiple users.

In the authentication stage, multiple users perform activities

simultaneously for authentication.𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ first collects CSI of

WiFi signals induced by users’ activities, and employs MUTA to pro-

file the multipath components induced by all the users. Then, after

aggregating and separating the multipath components,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ

constructs individual CSI of each user for individual characteri-

zation. Next, the trained dual-task model is employed to extract

behavioral features from user behavior profiles derived by the indi-

vidual CSI, and further authenticates each user under the multi-user

scenario.

4 MULTI-USER AUTHENTICATION
In this section, we present the design of the multi-user authentica-

tion system,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ.

4.1 MUTA Implementation for Multipath
Profiling

To achieve multi-user authentication,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ first collects CSI

of WiFi signals induced by multiple users’ activities, and then per-

forms MUTA to profile multipath components of WiFi signals. Due

to hardware imperfection and the requirement of subspace construc-

tion, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ first needs to calibrate CSI errors and determine

multipath numbers before implementing MUTA.

4.1.1 CSI Calibration. Due to hardware imperfection, there are

inevitable amplitude and phase errors in CSI of WiFi signals col-

lected from commodity WiFi devices. Hence, we first calibrate CSI

to correct amplitude and phase errors after collecting raw CSI data.

CSI amplitude error is caused by digitization errors whenmeasur-

ing the power of received signals, and CSI phase errors are mainly

caused by clock unsynchronization, such as Carrier Frequency Off-

set (CFO), Sampling Frequency Offset (SFO), and Packet Detection

Delay (PDD) [31], etc. To eliminate the amplitude and phase errors

in CSI, we adopt the error correction approach [24] for data calibra-

tion. The approach first mitigates amplitude errors by averaging

raw CSIs from multiple packets collected within coherence time.

Then, it mitigates constant phase errors by picking a reference chan-

nel and compensate for the phase difference between each channel

pair. In this way, the amplitude and phase errors are corrected,

which validates MUTA on CSI of commodity WiFi signals.

4.1.2 Determination of Multipath Number. In MUTA, the number

of multipath components is equal to the number of eigenvectors

in signal subspace when conducting eigenvalue decomposition.

If MUTA mistakenly includes noise eigenvectors into the signal

subspace, the measured ToAs would vary significantly across pack-

ets, which may affect the detection of user movement. Hence, it

is necessary to set an accurate number of multipath components

according to the received signal.

Since the fluctuation of LoS path only results from an inaccurate

multipath number, we consider using the stability of LoS path

to find the accurate number of underlying multipath components

from received CSI. Specifically, MUTA constructs pseudo-spectrums

with different multipath numbers, and calculates the variance of

LoS path’s ToAs over time. The multipath number with minimal

variance is chosen as the accurate multipath number. As a result,

under the accurate multipath number setting, the fluctuation of

ToAs only comes from human movement.

With the calibrated CSI and an accurate multipath number,

𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ performs multipath profiling using MUTA mentioned

in Section 2.1.

4.2 Multipath Aggregation and Separation
After implementing MUTA, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ could find the multipath

components induced by multiple users through searching the peaks

in the pseudo-spectrum. In practice, if the signal has a large band-

width, i.e., containing sufficient subcarriers, the number of multi-

path components could be abundant enough to allow one individual

to reflect several multipath components from different body parts

respectively. Hence, it is necessary to aggregate the multipath com-

ponents of each individual and separate the multipath components

from different individuals to characterize users.
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To realize multipath aggregation and separation, we first con-

struct multipath streams using the consecutive pseudo-spectrums

after removing static components. Figure 6 shows an example of

multipath streams, which exhibits several multipath components

over time from two users’ movements in bright curves. It can be

seen that the multipath components reflected by one individual are

closer while those between different individuals are farther. Hence,

𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ aggregates the curves closer to each other and separates

the curves farther from others to achieve multipath aggregation and

separation. Specifically, since the multipath components involved

with users have higher energy in the spectrogram, we first align

horizontal curves with high energy through dynamic programming

to find the multipath components induced by users. Then, we assign

these paths to different individuals according to their ToA distances.

The ToA distance of an individual could be set according to the size

of a normal person. Finally, through aggregating and separating

several curve regions from the whole streams, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ matches

the multipath components with specific ToAs to each user.

4.3 Individual CSI Construction
Based on the multipath components of each user through multipath

aggregation and separation, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ further constructs CSI cor-

responding to each user under multi-user scenarios, which is called

individual CSI. The individual CSI generated from multipath com-

ponents denotes the channel condition of specific paths, revealing

the information relevant with one specific user from the received

CSI. Different to paths’ ToA vibration that roughly describes user

behaviors shown in Section 2.2, the individual CSI simulates the

CSI of WiFi signals collected from each user solely, providing a

precise characterization of a single user.

To construct each user’s individual CSI, we first construct CSI

of each multipath component, and then employ all multipath com-

ponents induced by a user to construct his/her individual CSI. The

construction of CSI for each path refers to the estimation of CSI

amplitude and phase of the path. Specifically, the CSI 𝐻̂𝑖 of the 𝑖-th

multipath could be expressed as

𝐻̂𝑖 = 𝑎𝑖𝑒
−𝑗 (𝜙𝑖+2𝜋 𝑓 Δ𝑡𝑖 ) , (5)

where 𝑎𝑖 is the CSI amplitude of 𝑖-th path, 𝜙𝑖 is the initial phase

shift, and 2𝜋 𝑓 Δ𝑡𝑖 is the phase shift caused by the ToA Δ𝑡𝑖 under a
specific subcarrier 𝑓 . Theoretically, the sum of CSI for all multipath

components should be equal to the actual collected CSI 𝐻 . Hence,

we can estimate CSI of each multipath component by solving an

optimization problem, i.e.,

[𝑎𝑖 , ˆ𝜙𝑖 ] = arg min

𝑎𝑖 ,𝜙𝑖






 𝑁∑︁
𝑖=1

𝐻̂𝑖 − 𝐻





2 , (6)
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Figure 7: Comparison of individual CSI constructed inmulti-
user scenario and the CSI collected in single-user scenario.

where𝑁 is the number of multipath components. To solve the above

optimization problem, we define the CSI parameters standing for

amplitude and initial phase shift as

𝑃 = [𝑎1𝑒−𝑗𝜙1 𝑎2𝑒
−𝑗𝜙2 · · · 𝑎𝑁 𝑒

−𝑗𝜙𝑁 ]𝑇 , (7)

where 𝑎𝑖 and 𝜙𝑖 denote the amplitude and phase of the 𝑖-th multi-

path. Then, we form phase shifts of multipath’s ToAs as

Φ =


𝑒−𝑗2𝜋 𝑓1Δ𝑡1 𝑒−𝑗2𝜋 𝑓1Δ𝑡2 · · · 𝑒−𝑗2𝜋 𝑓1Δ𝑡𝑁

𝑒−𝑗2𝜋 𝑓2Δ𝑡1 𝑒−𝑗2𝜋 𝑓2Δ𝑡2 · · · 𝑒−𝑗2𝜋 𝑓2Δ𝑡𝑁

· · · · · ·
.
.
. · · ·

𝑒−𝑗2𝜋 𝑓𝑆Δ𝑡1 𝑒−𝑗2𝜋 𝑓𝑆Δ𝑡2 · · · 𝑒−𝑗2𝜋 𝑓𝑆Δ𝑡𝑁 ,


(8)

where 𝑓𝑖 is the frequency of 𝑖-th subcarrier and 𝑆 is the number of

subcarriers. Then, the optimization problem can be solved uniquely

by the following formula:

𝑃 = (Φ𝑇Φ)−1Φ𝑇𝐻. (9)

Finally, the CSI 𝐻̂𝑖 of each multipath component is obtained based

on the estimated 𝑎𝑖 and ˆ𝜙𝑖 in 𝑃 , i.e., 𝐻̂𝑖 = 𝑎𝑖𝑒
−𝑗 ( ˆ𝜙𝑖+2𝜋 𝑓 Δ𝑡𝑖 ) . After

the CSIs for all multipath components are estimated, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ

constructs the individual CSI of each user by jointly summarizing

the CSIs of each user’s multipath components.

To validate the effectiveness of constructing individual CSI, we

conduct an experiment to exhibit the capability of behavior exhi-

bition of individual CSI. In the experiment, two users locate with

1.5𝑚 vertical distance and perform pushing hand simultaneously.

We conduct MUTA on the CSI collected from the two users to de-

rive individual CSI of each user. Then, each user’s CSI is further

collected in a single-user scenario for comparison. Figure 7 shows

the individual CSI constructed in the two-user scenario and the CSI

collected in the single-user scenario respectively. It can be observed

that although individual CSIs suffer from some distortions, their

general fluctuation trends are similar to these of the CSIs collected

in the single-user scenario. This indicates that the individual CSI

could exhibit behaviors of each user solely in multi-user scenarios,

which could be used to achieve multi-user authentication.

4.4 User Behavior Profile Extraction
Based on the individual CSI of each user,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ further extracts

user behavior profiles underlying individual CSI for fine-grained

behavior characterization.
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Figure 8: Time-frequency spectrograms for two users.
Human activity is presented in CSI streams with two informa-

tions, i.e, duration and frequency [21]. Duration denotes the time a

person takes to perform an activity, and frequency represents the

velocity of body movements. Due to unique inherent physiology

and behavioral styles, different users exhibit different durations

and frequencies in CSI when performing activities. For example, a

person of high muscle mass performs activities in high acceleration

and velocity, resulting in a short duration and high frequency. Thus,

through time-frequency analysis, we could deeply reveal a person’s

uniqueness to distinguish users.

CSI streams of WiFi signals present a similar detection capability

with Doppler radar [20], and the Doppler effect could characterize

fine-grained movement [8]. Hence, we derive time-frequency spec-

trograms through Short-Time Fourier Transform (STFT) to analyze

user behaviors. Figure 8 shows time-frequency spectrograms for

two user’s individual CSIs when performing pushing hand several

times. We can observe high energy bands induced by users’ limb

movements. Moreover, there are also apparent patterns revealing

users’ behavior uniqueness. For example, the frequency magni-

tude indicates the speed of limb movement, the interval between

two adjacent actions, and the motion change including transitory

motion pause and restart. In particular, the two users’ patterns

have non-neglectable differences. For example, user 1 tends to have

higher frequency shifts during limb movement because of his faster

motion induced by big muscle masses, while user 2 presents longer

intervals between actions due to his behavioral habits.

To extract user behavior profiles, we first apply Butterworth

filter to eliminate high-frequency noises that exist in the impulse of

individual CSI. Then, we perform STFT on individual CSI to obtain

time-frequency spectrograms, and further calculate the contour of

high energy bands. Afterward, we segment the contour for each

action, each of which denotes a user behavior profile. Specifically,

we calculate the magnitude differential of contours, i.e.,

𝐷 (𝑛) =
(𝑛+1)𝐿−1∑︁
𝑡=𝑛𝐿

|𝐶𝑡+1 −𝐶𝑡 |, 𝑛 ∈ [0, 𝑁 − 1], (10)

where𝐷 (𝑛) is the magnitude differential of the 𝑛-th sliding window,

𝐿 is the length of sliding window, 𝐶𝑡 is the contour’s magnitude

value at time 𝑡 , and 𝑁 is the number of sliding window. When

𝐷 (𝑛) is constantly lower than a predefined threshold, the contour

remains stable, which indicates a suspense between actions. Hence,

the contour is segmented to episodes in the point, each of which

represents a user behavior profile.
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4.5 Dual-Task Model Construction for User
Authentication

Although user behavior profiles could characterize individual unique-

ness, they still suffer from distortions introduced by individual CSI

construction. To extract robust and fine-grained behavioral features

for user authentication, we first investigate the in-depth difference

between distortions and behavioral features. The distortion refers

to the transient error caused by mistakenly estimating parameters

of individual CSI, which are usually irrelevant and irregular. On the

contrary, the behavioral features embed significant sequential rela-

tionships, such as the action interval and motion change, which are

usually relevant and regular. Hence, using sequential relationships

could mitigate the influence of distortions for extracting robust

features induced by user activities. As a gating mechanism for Re-

current Neural Network (RNN), Gated Recurrent Unit (GRU) could

explore sequential relationship underlying input data [1], so we

employ GRU-based RNN as the basis for feature extraction.

Moreover, since behavior-based authentication involves two in-

terrelated tasks, i.e., identity authentication and activity recogni-

tion, the shared information among them could facilitate feature

extraction for each task. Hence, instead of designing two inde-

pendent models to realize the two tasks respectively, we employ

multi-task learning to construct a dual-task model, which exploits

shared information among the two tasks for learning more fine-

grained features for each task. Borrow the idea of [7], we design a

Convolutional Neural Network-Recurrent Neural Network (CNN-

RNN)-based dual-task model to extract robust and fine-grained

features for user authentication.

Figure 9 shows the architecture of the CNN-RNN-based dual-task

model, which consists of a shared feature extractor based on CNN-

RNN, and two fully-connected networks with different tasks, i.e., an

activity recognizer and user authenticator. The feature extractor in-

corporates three CNNs and two RNNs to extract behavioral features

from the input user behavior profile 𝐼 . The CNNs are composed of

convolutional layers abstracting the input 𝐼 as compressed repre-

sentation through convolutional operations, and the pooling layers

reducing the dimension of the compressed representation. It treats

user behavior profiles as images to abstract fine-grained features

from pixels to characterize human behaviors. The RNNs partition

the feature map from CNNs into fragments for sequential relation-

ship access, and then extracts a feature map 𝑅, which embeds the

behavioral features underlying human behavior profiles.

36



𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ: Enable Multi-User Authentication with Single Commodity WiFi Device MobiHoc ’21, July 26–29, 2021, Shanghai, China

46.9 mm x 10.9 mm46.9 mm

Corridor Meeting Room Lab

RxTx
35.8 mm x 12.0 mm

RxTx

Rx

Tx

3.6m
5.

0m
4.5m

6.
4m

4.6m

6.
0m

m x x 1010.9 mm

Figure 10: Experiment Environments.

The user authenticator and activity recognizer have the same

structure, consisting of two Fully-Connected (FC) layers and a

softmax layer. The inputs of the two networks are both the feature

map 𝑅 extracted from the feature extractor. With different tasks, the

two networks extract feature representations on different scales for

achieving user authentication and activity recognition respectively.

The user authenticator outputs identity label 𝑌𝑖 and identity loss

𝐿𝑖 (i.e., error of user authentication), and the activity recognizer

outputs the activity label 𝑌𝑎 and the activity loss 𝐿𝑎 (i.e., error of

activity recognition). To share the information they learn, the two

losses are combined for jointly training the model, i.e.,

𝐿 = 𝛼 (𝐿𝑎 + 𝑏) + 𝛽𝑒 (𝐿𝑖+𝑐) , (11)

where 𝛼 and 𝛽 are weights of the activity loss and identity loss

respectively, and 𝑏 and 𝑐 are the biases for activity loss and identity

loss respectively. Since user authentication requires more in-depth

features than activity recognition, the overall loss is designed in

exponential function, where the convergence of identity loss has a

higher priority than that of activity loss. By continuously passing

back the gradient on overall loss
𝜕𝐿
𝜕𝜃

to the feature extractor, the

dual-task model could be trained with the capability of extracting

robust and fine-grained features to authenticate users as well as

recognizing activities.

In addition to authenticating legitimate users,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ needs

to detect unexpected spoofers under the zero-effort attack and imi-

tation attack in multi-user scenarios. Human behavioral features

are determined by not only human subjectivity, but also objec-

tive physiological features (e.g., the length of limbs, the power

generated by muscle). Hence, there are obvious differences in be-

havioral features between a spoofer and a legitimate user, even if

the spoofer imitates the extrinsic behaviors of the legitimate user.

Based on such differences, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ could detect one or more

spoofers individually under multi-user scenarios to resist the two

kinds of attacks. Specifically, for each user,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ compares all

elements in the identity probability 𝑌𝑖 with a predefined threshold

𝜆. If ∀𝑘 ∈ [1, 𝑛], 𝑌𝑘
𝑖
< 𝜆, the current user is identified as a spoofer.

5 EVALUATION
To comprehensively evaluate𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ, we conduct experiments

in real environments.

5.1 Evaluation Setup
We implement𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ on a laptop HP Pavilion 14, and use two

wireless routers equipped with Atheros NIC and three antennas,

i.e., TL-WDR4310 and TL-WR2543N, as the transmitter and receiver

respectively. The wireless routers are modified with Atheros CSI

Tool [24], which enables fast channel switching for obtaining CSI
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Figure 12: FAR and FRR for
different cases.

on enlarged bandwidth WiFi signals. Two types of signal modes

are applied to evaluate the system under different WiFi modes.

In 2.4𝐺𝐻𝑧 band WiFi, we splice a 70𝑀𝐻𝑧 bandwidth signal from

channel 1 to 11 according to the methodology of [31]. In 5𝐺𝐻𝑧

band, we splice a 200𝑀𝐻𝑧 bandwidth WiFi signal from channel 36

to 56 according to the methodology of [24]. Considering there are 3

antennas in the wireless router to receive CSI, we concatenate the

three antennas’ CSI measurement matrices together to construct

a large measurement matrix for MUTA, which could improve the

resolution of multipath profiling according to [25].

A total of 15 volunteers are recruited in the experiments includ-

ing 9 males and 6 females, aged between 21 and 60. We ask 10

volunteers to play the role of legitimate users and the rest 5 vol-

unteers act as spoofers. Six common activities are selected for the

experiments, i.e., walking, turning right, turning left, sitting down,

standing up, and hands reaching out and pulling back. The experi-

ments are repeated in three environments, i.e., a corridor, meeting

room, and lab, whose layouts are shown in Figure 10. The simulta-

neously present users perform activities in specific areas where the

lengths of the propagation path composed by human body, Tx and

Rx are different. This is to ensure different ToAs of signal reflection,

which is the basis of multipath separation. Orientations of activity

performance are toward the transceivers. Moreover, the users are

reminded not to interfere with the direct signal propagation be-

tween other users and transceivers. The vertical distances between

the areas on one side are from 0.3𝑚 to 2𝑚 so as to meet the basic

requirements of multipath separation.

In the register stage, each legitimate volunteer performs each

activity 15 times to provide training samples for identity registering

individually. In the authentication stage, the volunteers participate

in three kinds of experiment cases respectively, i.e., 1-user case,

2-user case, and 3-user case. In the 1-user case, each volunteer is

authenticated individually to evaluate the single-user authentica-

tion capability of 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ. In the 2-user or 3-user cases, 2 or 3

volunteers are authenticated simultaneously to evaluate the multi-

user authentication capability of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ. The volunteers could

perform any predefined activity in each case.

5.2 Authentication Performance
We first evaluate user authentication performance of 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ.

Figure 11 shows the authentication accuracy of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ under

the three cases in the three environments respectively. Specifically,

the authentication accuracies under the three cases are 91.5%, 87.4%,

and 85.2% respectively with an average accuracy of 87.6%. We can

see that compared with the single-user scenario, the accuracy of
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authenticating multiple users slightly degrades. The result demon-

strates that𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ effectively extends single-user authentica-

tion to multi-user authentication with an acceptable authentication

performance under multi-user scenarios.

In addition, we can also observe from Figure 11 that there are

similar accuracy variances of environments under different cases,

i.e., the meeting room enables a better authentication accuracy

than the corridor and the lab. This is because the meeting room

has a larger area and less furniture, which makes the multipath

reflection more simple and thus reduces the interference between

different users’ multipath components. However, even in a complex

environment, the authentication accuracy under the 3-user cases

could be still approaching 85%, which demonstrates that𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ

is reliable and robust in different environmental layouts.

The False Accept Rate (FAR) and False Reject Rate (FRR) denote

the probabilities of falsely detecting spoofers as legitimate users and

misidentifying legitimate users as spoofers. Figure 12 shows the FAR

and FRR under the three cases, where the number of simultaneous

present spoofers ranges from 1 to 3 in the multi-user scenarios. We

can see that𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ achieves an overall FAR of 8.8% and FRR of

5.2% respectively. Compared with the single user scenario, the FAR

and FRR for multi-user scenarios increase less than 4%, which are

insignificant. The result demonstrates that 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ is reliable

to detect multiple spoofers simultaneously to resist the zero-effort

and imitation attacks in the multi-user scenarios. Also,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ

rarely rejects legitimate users, which guarantees a user-friendly

experience for user authentication.

5.3 Activity Recognition Performance
In addition to authenticating multiple users, 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ can also

recognize the activities performed by the users. We further evaluate

the activity recognition performance of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ under the single-

user scenario andmulti-user scenarios respectively. Figure 13 shows

the recognition accuracy for each activity in different cases. Specif-

ically, the activity recognition accuracies for the three cases are

92.7%, 89.5%, and 87.4% respectively. Compared with single-user ac-

tivity recognition, recognizing multiple users’ activities simultane-

ously does not introduce significant performance degradation. This

indicates that𝑀𝑢𝑡𝑖𝐴𝑢𝑡ℎ enables the multi-user activity recognition

comparable with single-user activity recognition. Moreover, we can

see that different activities do not induce significant differences in

recognition accuracy. For example, the recognition accuracy dif-

ference between the coarse-grained walking and the fine-grained

hands reaching out and pulling back is only 2.8%. This result demon-

strates that 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ is reliable in recognizing various kinds of

daily activities under multi-user scenarios.

RxRxTx

Scenario A Scenario CScenario B

TxRxTx

(a) Setup of user location.

Scenario A Scenario B Scenario C

0

20

40

60

80

100

A
u
th

en
ti

ca
ti

o
n
 A

cc
u
ra

cy
 (

%
)

 Close user

 Middle user

 Distant user

(b) Authenticaiton Accuracy under dif-

ferent locations.

Figure 15: Authentication performance under different se-
tups of user location.

5.4 Impact of Distance between Users
The distance between users affects the separation for the users. We

evaluate the impact of vertical distance between users of one side on

𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ in the 3-user case. Here we define the three users as the

close user, middle user, and distant user respectively according to

their relative distance to the LOS path. With the close user located

in a fixed position, the middle user and distant user located away

from the previous user with a fixed distance. For example, a distance

of 0.3𝑚 indicates that the middle user and distant user are vertical

0.3𝑚 and 0.6𝑚 away from the close user respectively.

Figure 14 shows the authentication accuracy under different dis-

tances between the users. It can be observed that with the distance

increases, the overall authentication accuracy improves rapidly, and

exceeds 80% for all the users when the distance reaches 0.6𝑚. This is

because the increasing distance makes the multipath components of

different users easier to be separated, which could characterize each

user’s behaviors more accurately for user authentication. Moreover,

we can also see that as the distance exceeds 1.5𝑚, the authentication

performance for the close user and middle user tends to be stable

while that for the distant user slowly decreases. This is because the

increasing distance put the distant user far away from the major

WiFi sensing area, resulting in significant signal attenuation and

thus unable to effectively capture individual behaviors. Such perfor-

mance degradation is caused by the limitation of commodity WiFi

sensing. According to [15], the suitable face-to-face communication

distances of users are between 0.46𝑚 to 1.22𝑚. Hence,𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ

could effectively authenticate multiple users under the majority of

suitable communication distances.

5.5 Impact of User Location
Because of the interference and obstruction between simultane-

ously present users, the location of users induces an inevitable

influence on multi-user authentication. We experiment to explore

the impact of user location on system performance. Since the two

sides are symmetric, we focus on three representative scenarios

of users’ locations on one side, as shown in Figure 15(a). Scenario

A and B are typical experimental setups for previous evaluations,

which enables non-obstructive stations for signal propagation. Sce-

nario C, however, presents a straight line-connected user location

in which the signal propagation suffers from interference and ob-

struction. The vertical distances between users are 0.8𝑚 to 1.2𝑚.

We exhibit the authentication performance under the three sce-

narios for 3-user case, as shown in Figure 15(b). Obviously, we can

observe that scenarios A and B achieve acceptable performance.
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Figure 16: Authentication ac-
curacy under different band-
widths.
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Figure 17: Authentication ac-
curacy under different train-
ing data sizes.

Specifically, the three users in scenarios A and B could be authenti-

cated with average 87.1% and 85.9% accuracies respectively. And

we can also see the variation between users in the two scenarios is

insignificant, demonstrating a robust authentication performance

among different users. For scenario C, the authentication accuracies

for the three users dramatically decrease to 78.7%, 68.4%, and 65.9%

respectively with significant user variations. The reason is that the

front user becomes an obstacle interfering with the signal propa-

gation of the back user. The result proves that 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ works

under majority situations. However, it invalidates the authentica-

tion capability in some special cases where users interfere with the

signal propagation between each other.

5.6 Impact of Signal Bandwidth
The signal bandwidth determines the number of available sub-

carriers to be utilized in MUTA, which affects the resolution of

multipath profiling. Hence, it is necessary to evaluate the impact

of signal bandwidth on multi-user authentication. In this experi-

ment, we implement𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ with 20𝑀𝐻𝑧 to 60𝑀𝐻𝑧 bandwidth

under 2.4𝐺𝐻𝑧 signal and 80𝑀𝐻𝑧 to 200𝑀𝐻𝑧 under 5𝐺𝐻𝑧 signal

respectively to explore the performance under different bandwidths.

Figure 16 shows the authentication accuracy of different cases un-

der these bandwidths. It can be observed that the larger bandwidths

could improve the authentication accuracy for all cases. Specifically,

when the bandwidth increases from 20𝑀𝐻𝑧 to 200𝑀𝐻𝑧, the overall

authentication accuracy for the three cases promotes from 55.3%

to 87.6%. This is because, with sufficient subcarriers, MUTA can

resolve more multipath components and thus could characterize

each individual more precisely. Moreover, we can also see that as

the bandwidth increases, the deviation of authentication accuracy

gradually decreases, which indicates better robustness of user au-

thentication under large bandwidth signals. This result suggests

that 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ should be implemented under large bandwidth

WiFi signals for a reliable multi-user authentication.

5.7 Impact of Training Data Size
Since𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ incorporates a neural network, i.e., the CNN-RNN-

based dual-task model, the size of training data would affect the

system performance. We evaluate the impact of training data size

on authentication performance of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ. Figure 17 shows the

authentication accuracy of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ under different training sizes

for the three cases. It can be observed that with the training size

increases, the authentication accuracy first improves and then tends

to be stable for all the cases. When the training data size increases
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to 9 samples, the authentication accuracies for the three cases pro-

mote to 87.2%, 82.2%, and 80.1%, which is comparable to that with

more training samples. The result demonstrates that to ensure an

acceptable multi-user authentication performance, each user should

perform each activity at least 9 times to provide training samples.

Such a requirement does not significantly affect user experience

during user registration.

6 DISCUSSION
In this section, we discuss a practical limitation of𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ and

present a feasible solution.

As shown in Figure 18, if multiple users are located on an ellipse

focusing on the transmitter and receiver, the multipath components

cannot be separated due to the same ToA. Hence, individual CSI

contains information of the users simultaneously, which invalidates

the multi-user authentication in such a special case.

To enable multi-user authentication in the special case, we con-

sider exploiting Angle-of-Arrival (AoA) of WiFi signals to separate

the individual CSI containing multiple users’ informations of the

same ToA. As shown in Figure 19, there is a signal with𝐾 multipath

components propagate to several receiving antennas with the same

ToA Δ𝑡𝑖 but different incident angle 𝜃
𝑘
. Thus, the multipath com-

ponents result in a path length difference 𝑑 sin𝜃𝑘 between the first

and second antennas and thus causes a phase shift 2𝜋 𝑓 𝑑 sin𝜃𝑘/𝑐 ,
where 𝑓 is frequency and 𝑐 is the speed of light. Assume 𝐻̂ ′

𝑖
is the

CSI for the 𝐾 multipath components, it could be expressed as the

sum of CSIs for these multipath components respectively, i.e.,

𝐻̂ ′
𝑖 =

𝐾∑︁
𝑘=1

ˆ𝐻 ′𝑘
𝑖 =

𝐾∑︁
𝑘=1

𝑎𝑘𝑖 𝑒
−𝑗 (Φ𝑘

𝑖
+2𝜋 𝑓

Δ𝑑 sin𝜃𝑘
𝑖

𝑐
) , (12)

where
ˆ𝐻 ′𝑘
𝑖 is the CSI of the 𝑘-th multipath with the ToA Δ𝑡𝑖 , 𝑎

𝑘
𝑖
is

the amplitude,Φ𝑘
𝑖
= 𝜙𝑘

𝑖
+2𝜋 𝑓 Δ𝑡𝑖 denotes the initial phase and phase

shift caused by the ToA Δ𝑡𝑖 , Δ𝑑 is the distance between current

antenna with the first antenna, and 𝜃𝑘
𝑖
is the AoA. Theoretically, the

sum of the 𝐾 multipath CSIs is equal to the CSI 𝐻̂𝑖 calculated by the

ToA Δ𝑡𝑖 . Hence, through solving a similar optimization problem, we

can calculate the CSI for each multipath component even if these

multipath components have the same ToA,

[𝑎𝑘𝑖 , Φ̂
𝑘
𝑖 ] = argmin






 𝐾∑︁
𝑘=1

ˆ𝐻 ′𝑘
𝑖 − 𝐻̂𝑖






 . (13)

Hence, the individual CSI constructed from users with the same

ToA is separated into different individual CSIs, each of which cor-

responds to a single user, indicating that users with the same ToA

could also be authenticated.

7 RELATEDWORK
In the section, we review some works related to𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ.
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Wireless Sensing Application. WiFi devices are widely de-

ployed in indoor environments, which realizes wireless sensing

to support various applications, such as indoor localization [22],

activity recognition [21, 23], gesture recognition [16, 29], human

tracking [10, 11], and domain-adaptation [4, 28], etc. However, all

these works are designed for single-user scenario. To extend WiFi

sensing application to multi-user scenarios,𝑀𝑖𝑀𝑈 [18] combines

different users’ gestures to generate virtual samples for realizing

multi-user gesture recognition. But the combination of all available

gestures consumes much computing resources. A following work

𝑀𝑢𝑙𝑡𝑖𝑇𝑟𝑎𝑐𝑘 [17] enables multi-user tracking and gesture recogni-

tion through multiple devices. However, it imposes a heavy process

burden, which limits the practical spread of such applications.

Behavior-based User Authentication. To enable user authen-
tication, some studies explore WiFi signals to sense human move-

ments for employing low-cost and widely deployed devices. Early

researches [20, 27] implement authentication through sensing hu-

man gaits. Following works extend to realize the authentication

with coarse-grained activities [14], fine-grained gestures [6, 7], etc.

However, all these WiFi-based authentications can only authenti-

cate user under single-user scenario, which limits the application

scenarios in real situations.

Application for Multiple Users. Nowadays, many efforts are

being made to extend the state-of-the-art applications to multi-user

scenarios for improving the real-world availability. For example,

𝐹𝑎𝑐𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑦 [3] enables multiple users to simultaneously inter-

act with the virtual world via touch or gestures. A previous work

[5] processes multiple users’ utterances simultaneously to achieve

multi-user speech recognition. Another work [19] recognizes multi-

user activities using wearable sensors. A recent work 𝐷𝑒𝑒𝑝𝐵𝑟𝑒𝑎𝑡ℎ

[26] detects multi-user breathing simultaneously through RF sig-

nals. All of these works present the potential to implement the

state-of-the-art applications to multi-user scenarios.

8 CONCLUSION
In this paper, we propose 𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ, which could authenticate

multiple users with commodity WiFi device. We first present a MUl-

tipath Time of Arrival measurement algorithm (MUTA) to profile

multipath components of WiFi signals in high resolution. Then, af-

ter aggregating and separating the multipath components reflected

by different users, we construct individual CSI of each user for

behavior characterization. Afterward, we extract user behavior pro-

files from individual CSI, and further design a Convolutional Neural

Network-Recurrent Neural Network (CNN-RNN)-based dual-task

model to authenticate each user under multi-user scenarios. Ex-

periments demonstrate that𝑀𝑢𝑙𝑡𝑖𝐴𝑢𝑡ℎ is accurate and reliable for

multi-user authentication.

REFERENCES
[1] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555
(2014).

[2] Duarte, M., Sabharwal, A., Aggarwal, V., Jana, R., Ramakrishnan, K. K.,

Rice, C. W., and Shankaranarayanan, N. K. Design and characterization

of a full-duplex multiantenna system for wifi networks. IEEE Transactions on
Vehicular Technology 63, 3 (2014), 1160–1177.

[3] Gugenheimer, J., Stemasov, E., Sareen, H., and Rukzio, E. Facedisplay: towards

asymmetric multi-user interaction for nomadic virtual reality. In Proc. ACM
CHI’18 (Montreal, QC, Canada, 2018), pp. 1–13.

[4] Jiang, W., Miao, C., Ma, F., Yao, S., Wang, Y., Yuan, Y., Xue, H., Song, C., Ma,

X., Koutsonikolas, D., et al. Towards environment independent device free

human activity recognition. In Proc. ACM MobiCom’18 (New Delhi, India, 2018),

pp. 289–304.

[5] Kim, J., and Sung, W. Multi-user real-time speech recognition with a gpu. In

2012 IEEE ICASSP’12 (2012), pp. 1617–1620.
[6] Kong, H., Lu, L., Yu, J., Chen, Y., Kong, L., and Li, M. Fingerpass: Finger gesture-

based continuous user authentication for smart homes using commodity wifi. In

Proc. ACM MoboHoc’19 (Catania, Italy, 2019).
[7] Li, C., Liu, M., and Cao, Z. Wihf: Enable user identified gesture recognition with

wifi. In In Proc. IEEE INFOCOM’20 (Toronto, ON, Canada, 2020), pp. 586–595.
[8] Lu, L., Yu, J., Chen, Y., Zhu, Y., Xu, X., Xue, G., and Li, M. Keylistener: Inferring

keystrokes on QWERTY keyboard of touch screen through acoustic signals. In

In Proc. IEEE INFOCOM’19 (Paris, France, 2019), pp. 775–783.
[9] Miraz, M. H., Ali, M., Excell, P. S., and Picking, R. A review on internet of

things (iot), internet of everything (ioe) and internet of nano things (iont). In

2015 Internet Technologies and Applications (ITA) (2015), IEEE, pp. 219–224.
[10] Qian, K., Wu, C., Yang, Z., Liu, Y., and Jamieson, K. Widar: Decimeter-level

passive tracking via velocity monitoring with commodity wi-fi. In Proc. ACM
MobiHoc’17 (Chennai, India, 2017), p. 6.

[11] Qian, K., Wu, C., Zhang, Y., Zhang, G., Yang, Z., and Liu, Y. Widar2. 0: Passive

human tracking with a single wi-fi link. In Proc. ACM MobiSys’18 (Munich,

Germany, 2018), pp. 350–361.

[12] Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE
transactions on antennas and propagation 34, 3 (1986), 276–280.

[13] Shahzad, M., and Zhang, S. Augmenting user identification with wifi based

gesture recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3
(2018), 134.

[14] Shi, C., Liu, J., Liu, H., and Chen, Y. Smart user authentication through actuation

of daily activities leveraging wifi-enabled iot. In Proc. ACM MobiHoc’17 (Chennai,

India, 2017), p. 5.

[15] Sorokowska, A., Sorokowski, P., Hilpert, P., Cantarero, K., Frackowiak, T.,

Ahmadi, K., Alghraibeh, A. M., Aryeetey, R., Bertoni, A., Bettache, K., et al.

Preferred interpersonal distances: a global comparison. Journal of Cross-Cultural
Psychology 48, 4 (2017), 577–592.

[16] Tan, S., and Yang, J. Wifinger: leveraging commodity wifi for fine-grained

finger gesture recognition. In Proc. ACMMobiHoc’16 (Paderborn, Germany, 2016),

pp. 201–210.

[17] Tan, S., Zhang, L., Wang, Z., and Yang, J. Multitrack: Multi-user tracking

and activity recognition using commodity wifi. In Proc. ACM CHI’19 (Glasgow,
Scotland, UK, 2019), p. 536.

[18] Venkatnarayan, R. H., Page, G., and Shahzad, M. Multi-user gesture recogni-

tion using wifi. In Proc. ACM MobiSys’18 (Munich, Germany, 2018), pp. 401–413.

[19] Wang, L., Gu, T., Tao, X., Chen, H., and Lu, J. Recognizing multi-user activities

using wearable sensors in a smart home. Pervasive and Mobile Computing 7, 3
(2011), 287–298.

[20] Wang, W., Liu, A. X., and Shahzad, M. Gait recognition using wifi signals. In

Proc. ACM UbiComp’16 (Heidelberg, Germany, 2016), pp. 363–373.

[21] Wang, W., Liu, A. X., Shahzad, M., Ling, K., and Lu, S. Understanding and mod-

eling of wifi signal based human activity recognition. In Proc. ACM MobiCom’15
(New York, USA, 2015), pp. 65–76.

[22] Wang, X., Gao, L., Mao, S., and Pandey, S. Csi-based fingerprinting for indoor

localization: A deep learning approach. IEEE Transactions on Vehicular Technology
66, 1 (2016).

[23] Wang, Y., Liu, J., Chen, Y., Gruteser, M., Yang, J., and Liu, H. E-eyes: device-

free location-oriented activity identification using fine-grained wifi signatures.

In Proc. ACM MobiCom’14 (Maui, Hawaii, USA, 2014), pp. 617–628.

[24] Xie, Y., Li, Z., and Li, M. Precise power delay profiling with commodity wifi. In

Proc. ACM MobiCom’15 (Paris, France, 2015), p. 53–64.
[25] Xiong, J., Sundaresan, K., and Jamieson, K. Tonetrack: Leveraging frequency-

agile radios for time-based indoor wireless localization. In Proc. ACMMobiCom’15
(Paris, France, 2015), pp. 537–549.

[26] Yue, S., He, H., Wang, H., Rahul, H., and Katabi, D. Extracting multi-person

respiration from entangled rf signals. Proc. ACM IMWUT’18 2, 2 (2018).
[27] Zeng, Y., Pathak, P. H., and Mohapatra, P. Wiwho: wifi-based person identifi-

cation in smart spaces. In Proc. IEEE IPSN’16 (Vienna, Austria, 2016), p. 4.
[28] Zhang, J., Tang, Z., Li, M., Fang, D., Nurmi, P., and Wang, Z. Crosssense:

towards cross-site and large-scale wifi sensing. In Proc. ACM MobiCom’18 (New
Delhi, India, 2018), pp. 305–320.

[29] Zheng, Y., Zhang, Y., Qian, K., Zhang, G., Liu, Y., Wu, C., and Yang, Z. Zero-

effort cross-domain gesture recognition with wi-fi. In Proc. ACM MobiSys’19
(Seoul, South Korea, 2019), pp. 313–325.

[30] Zhou, C., Haber, F., and Jaggard, D. L. A resolution measure for the MUSIC

algorithm and its application to plane wave arrivals contaminated by coherent

interference. IEEE Trans. Signal Process. 39, 2 (1991), 454–463.
[31] Zhuo, Y., Zhu, H., Xue, H., and Chang, S. Perceiving accurate CSI phases with

commodity wifi devices. In Proc. IEEE INFOCOM’17 (GA, USA, 2017), pp. 1–9.

40


	Abstract
	1 Introduction
	2 Preliminary
	2.1 Theoretical Fundamental of Multipath Profiling Using CSI
	2.2 Feasibility Study of Multi-User Authentication using CSI

	3 Design Overview
	3.1 Threat Model
	3.2 System Overview

	4 Multi-User Authentication
	4.1 MUTA Implementation for Multipath Profiling
	4.2 Multipath Aggregation and Separation
	4.3 Individual CSI Construction
	4.4 User Behavior Profile Extraction
	4.5 Dual-Task Model Construction for User Authentication

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Authentication Performance
	5.3 Activity Recognition Performance
	5.4 Impact of Distance between Users
	5.5 Impact of User Location
	5.6 Impact of Signal Bandwidth
	5.7 Impact of Training Data Size

	6 Discussion
	7 Related Work
	8 Conclusion
	References

